Trusted Computing – Special Aspects and Challenges

Prof. Dr.-Ing. Ahmad-Reza Sadeghi
Chair for System Security
Horst-Görtz-Institute for IT-Security
Ruhr-University Bochum, Germany

http://www.trust.rub.de
Organizational Issues

- **Lecture**
 - Mondays 10.15 am – 11.45 am in IC 1/161

- **Exercises**
 - Theoretical part (homework)
 - Practical part (in the Lab for Operating System Security and Trusted Computing, IC 4/31)
 - 7 Exercises of two hours, starting in the middle of Mai

- **Tutors**
 - Hans Lühr, Biljana Cubaleska (contact data on www.trust.rub.de)

- **Exam**
 - Oral examination (75 % of the mark)
 - Exercises (25 % of the mark)
Recommended Literature

- D. Challenger, K. Yoder, et al.
 “A Practical Guide to Trusted Computing”
 IBM Press, 2008

- Thomas Müller
 “Trusted Computing Systeme – Konzepte und Anforderungen”
 Springer Verlag, 2008

- Lecture Website:
 http://www.ei.rub.de/studierende/lehrveranstaltungen/231/
 - Lecture slides
 - Exercises
 - Other references
 - All announcements
Roadmap of this Lecture

- Introduction to trusted computing
- Trusted Platform Module (TCG)
- Selected TCG Functionalities
 - Authenticated boot, binding and sealing, attestation, trusted network connect
- Trusted virtualization
- Some research concepts and challenges
 - IBM Integrity Measurement Architecture, property-based attestation, trusted channels, virtual TPM, TPM compliance, trusted virtual domains
Chapter 1: Introduction to Trusted Computing

Prof. Dr.-Ing. Ahmad-Reza Sadeghi
Chair for System Security
Horst-Görtz-Institute for IT-Security
Ruhr-University Bochum, Germany

http://www.trust.rub.de
Roadmap of Chapter 1

Introduction to Trusted Computing

- **Motivation**
- **Notion of trust**
- **Towards trustworthy computing platforms**
- **Trusted Computing Group (TCG) approach to trusted computing**
- **Basic TCG concepts**
The Big Picture

- Trustworthiness in distributed IT systems
 - Different parties with potentially conflicting requirements involved
 - Cryptographic methods are of limited help
- How to define „trustworthiness“?
- How to determine/verify it?
- How could common computing platforms support such functionality?
 - Even a secure OS cannot verify own integrity
- The role of Trusted Computing
 - Enable the reasoning about the “trustworthiness” of own and other’s IT system
Demand for TC and Application Domains

- **Demand for Trusted Computing**
 - Improve security of existing IT Systems (malware, phishing, etc.)
 - Increasing threats for IT systems
 - Inflexibility of traditional secure systems (reference monitors)
 - Improve existing IT infrastructures (e.g., VPN)
 - Enable new applications with sophisticated (security) requirements

- **Application domains**
 - Monitoring and verifying integrity of IT systems
 - Controlling access to and usage of services and resources (online services, shared hardware, sensitive data)
Possible Use-Cases

- **E-Services**
 - Government (e.g., e-Voting integrity)
 - Health (e.g., confidentiality of sensitive medical records)
 - Commerce (e.g., enforceability of digital signatures)
- **Online banking**
- **Grid computing**
- **Digital/enterprise rights management**
- **Secure supply chains**
- **Mobile computing**
Roadmap of Chapter 1

Introduction to Trusted Computing

- Motivation
- Notion of trust
- Towards trustworthy computing platforms
- Trusted Computing Group (TCG) approach to trusted computing
- Basic TCG concepts
Issues and Vocabulary

- **Trust**
 - Complicated notion studied and debated in different areas (social sciences, philosophy, psychology, computer science,...)
 - Notion relating to belief in honesty, truthfulness, competence, reliability etc. of the trusted entity
 - Social Trust - belief in the safety or goodness of something because of reputation, association, recommendation, perceived benefit

- **Meanings (an attempt)**
 - Secure: system or component will not fail with respect to protection goals
 - Trusted: system or component whose failure can break the (security) policy (Trusted Computing base (TCB))
 - Trustworthy: the degree to which the behavior of the component or system is demonstrably compliant with its stated functionality

- **Trusted Computing Group (TCG) defines a system as trusted**
 - “[...] if it always behaves in the expected manner for the intended purpose.”
Basic Idea for Trusted Platform

- Trusted components in hardware and software
- Provides a variety of functions that must be trusted
 - in particular a set of cryptographic and security functions
- Creates a foundation of trust for software
- Provides hardware protection for sensitive data
 - e.g., keys, counters, etc.
- Desired goals
 - Trusted Computing Base (TCB) should be minimized
 - Compatibility to commodity systems
Objectives

- **Multilateral security**
 - Considers different and possibly conflicting security requirements of different parties and strives to balance these requirements
 - Refers to (classical) security goal (e.g., confidentiality, integrity and availability)
 - Typical conflict occurs between the wish for privacy and the interest in cooperation

- **Problems**
 - Insufficient protection in SW and HW of existing computing platforms
 - Malicious code (viruses, Trojan horses, ...)
 - DMA (Direct Memory Access)
 - No secure storage
 - Main reasons
 - High complexity and poor fault isolation of operating systems
 - Lack of functional and protection mechanisms in hardware
 - Security unawareness of users or security measures still not useable enough
Roadmap of Chapter 1

Introduction to Trusted Computing

- Motivation
- Notion of trust
- Towards trustworthy computing platforms
- Trusted Computing Group (TCG) approach to trusted computing
- Basic TCG concepts
Primary Goals

- Improve security of computing platforms
- Reuse existing modules
 - e.g., GUI, common OS
- Applicable for different OS
 - No monopoly, space for innovation (small and mid-sized companies)
- Open architecture
 - Use open standards and open source components
 - Trustworthiness/costs/reliability/compatibility
- Efficient portability
- Allow realization of new applications/business models
 - Providing multilateral security needed for underlying applications
 (based on various sets of assumptions and trust relations)
 - Avoiding potential misuse of trusted computing functionalities
Desired Primitives

1. Metric for code configuration
 - I/O behavior of a machine based on an initial state
 - e.g., represented by the hash value of the binary code
 - Problematic when functionality depends on other codes not included in hashing (e.g., shared or dynamically linked libraries)
 - Sometimes the notion of code identity is used [EnLaMaWi2003]

2. Integrity verification (Attestation)
 - Allows a computing platform to export verifiable information about its properties (e.g., identity and initial state)
 - Comes from the requirement of assuring the executing image and environment of an application located on a remote computing platform
Desired Primitives (cntd.)

3. Secure storage
 - to persist data securely between executions using traditional untrusted storage like hard drives
 - To encrypt data and assured to be the only capable of decrypting it

4. Strong process isolation
 - Assured (memory space) separation between processes
 - Prevents a process from reading or modifying another process’s memory

5. Secure I/O
 - Allows application to assure the end-points of input and output operations
 - A user can be assured to securely interact with the intended application
Need for Secure Hardware and Software

- **Hardware**
 - Even a secure operating system cannot verify its own integrity (another party is needed)
 - Secure storage
 - DMA control
 - Isolation of security-critical programs
 - Hardware-based random numbers
 - Fundamental to cryptography

- **Software (operating systems)**
 - Hardening, e.g., SE Linux [LoSm2001]
 - Still too complex and large TCB (Trusted Computing Base)
 - Complete new design
 - e.g., Trusted Mach, EROS (Extremely Reliable Operating System) [TrustedMach1991, Shap1999]
 - Compatibility problem, less market acceptance
 - Secure Virtual Machine Monitors (e.g., [Gold74, Sailer et al 2005])
 - Allow reuse of legacy software
Introduction to Trusted Computing

- Motivation
- Notion of trust
- Towards trustworthy computing platforms
- Trusted Computing Group (TCG) approach to trusted computing
- Basic TCG concepts
Trusted Computing Group (TCG)

- Consortium of IT-Enterprises (since April 2003)
 - Today more than 120 members [TCG]
 - www.trustedcomputing.org/about/members/
- Focus on development of hardware-enabled trusted computing and security technology across multiple platforms and devices
- Evolved from Trusted Computing Platform Alliance (TCPA)
 - Formed by Hewlett-Packard (HP), Compaq (today part of HP), IBM, Intel and Microsoft in January 1999
- Has published various specifications
TCG Work Groups I

- Trusted Platform Module (TPM) Work Group
 - Specifies Trusted Platform Module (TPM)

- TCG Software Stack (TSS) Work Group
 - Specifies hardware and operating system independent interfaces for using TPM features

- Trusted Network Connect (TNC) Work Group
 - Standards ensuring multi-vendor interoperability that enable network operators to enforce security policies for endpoint integrity for network connections

- Infrastructure Work Group (IWG)
 - Adoption and integration of TCG concepts into Internet and enterprise infrastructure technologies
TCG Work Groups II

- **PC Client Work Group**
 - Specifies functionality, interfaces, and security and privacy requirements for PC clients using TCG components
 - Has advisory role for TPM and other TCG work groups

- **Server Work Group**
 - Specifies integration of TCG technology into server systems

- **Mobile Phone Work Group**
 - Adoption of TCG concepts for mobile devices
 - Addresses specific features of mobile devices like connectivity and limited capability
TCG Work Groups III

- Storage System Work Group
 - Standards for security services on dedicated storage systems with removable media drives, flash storage and multiple storage device systems including dedicated storage controller interfaces
 - E.g., ATA, Serial ATA, SCSI, FibreChannel, USB storage, FireWire (IEEE 1394) and Network Attached Storage (NAS)
TCG Main Specification

- Trusted Platform Module (TPM) [TPM2002, TPM2003, TPM2007]
 - Provides a set of immutable cryptographic and security functions

- Trusted Software Stack (TSS) [TSS2003, TSS2007]
 - Issues low-level TPM requests and receives low-level TPM responses on behalf of higher-level applications
Roadmap of Chapter 1

Introduction to Trusted Computing

- Motivation
- Notion of trust
- Towards trustworthy computing platforms
- Trusted Computing Group (TCG) approach to trusted computing

- Basic TCG concepts
 - Chain of trust
 - Integrity measurements
 - Abstract model of TCG concept
Chain of Trust for Measurements

- Goal is to gain trust in entity E_n
- Operational standpoint: E_0 launches E_1, E_1 launches E_2, ...
- To trust E_n one must trust E_{n-1}
- E_0, E_1 to E_n creates a “chain of trust”
- “Transitive trust”
 - Trust is transitive from E_0 to E_1 to E_2 ...
 - It does not invert: trusting E_0 does NOT imply that one must trust E_2
 - Trusting E_2 REQUIRES one to trust E_0 and E_1
Chain Measurement

- **What does one need to “trust” the chain**
 - The identity of each item in the chain
 - identity = measurement (according to TCG definition)
 - E.g., a hash value of the binary code
 - Generic flow: each member measures its successor before passing the control to it
 - E_0 measures E_1 before passing control to E_1 and so on

- **Who measures E_0?**
 - Root of Trust for Measurements (RTM)
 - Must be trusted, no mechanism to measure it
 - To create a chain of trust the first entity must be the RTM
Performing Integrity Measurements

1. RTM measures entity E
2. RTM creates Event Structure in TPM Event Log
 - SML contains the Event Structures for all measurements extended to the SM
 - SM Event Log can be stored on any storage device
 - E.g., hard disk
3. RTM extends value into Registers
4. Execute/pass control to entity E
Abstract Model of TCG Concept

Trusted Platform P
- provides integrity of host H

Host H (untrusted)
- firmware
- operating system
- applications

Attestor A
- trusted component (hard- and software)
- Securely stores C_H

Verifier V
- local or remote
- can decide whether C_H violates its security requirements
- can “bind/seal” data D to a specific (probably secure) configuration/state of H

Challenge / Verifier

User / Adversary

Attest: Verify system integrity

Bind/Seal: Access control depending on system configuration

C_H - initial configuration/state of host H when platform P has been booted

D - data to be revealed only if host H is in the (secure) configuration C_H

insecure channel

secure channel
Concerns About TCG Approach

- Potential basis for Digital Rights Management (DRM)
- Less freedom
 - Including freedom of choice and user control
- Privacy violation
 - Disclosure of platform identity and configuration
- Confusing language
 - “Trust”, “control”, “opt-in”, ...
- Core specifications unreadable
 - Leads to misunderstanding
- Danger of restricting competition
 - Misuse of sealed storage capabilities, locking out alternative applications and inhibiting interoperation
- Much of the criticism related to Microsoft’s NGSCB
 - Several name changes Palladium, NGSCB, Longhorn, Vista
 - Bad publicity or legal challenges on rights to the names
Legal Requirements on TC/TCG

- **Main actors**
 - German Government Requirements Catalogue on TCG
 - Electronic Frontier Foundation (EFF)
 - European Commission Article 29 (Data Protection Working Party)
 - New Zealand Government’s initiative on TC/DRM technologies

- **Main requirements**
 - Prevent confusion and clarify terms (trust, trusted, trustworthy, thread model)
 - Privacy issues (user, platform,...), application and design of new technologies should be privacy compliant by default
 - Unrestricted user control (e.g., over keys and IT technology)
 - Transparency of certification
 - Option for transferring secrets between different machines
 - Functional separation of TPM and CPU/chipsets
 - Product discrimination
 - TC/DRM should not adversely affect security of government-held information
Next Chapter:

Chapter 2:

Trusted Platform Module (TPM) - Main TCG Specification